
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:

;RS232.LIB v1.0 Last modified on 26 Feb. 2006
;
;Description
; This subroutine provides calls for RS-232 functionality, including:
; - variable Baud rates and data bits
; - receive bit setup
; - Request to Send bit setup
; - wait for a serial start bit
; - receive a serial character
;
;Variables
; Each of the variables below must be equated to a file register by
; the calling program:
; Counter - Used by bit time delay loop
; BitCounter - Counts number of received bits
; Receive - Stores the received serial byte
; Transmit - Stores the serial byte to be transmitted
;
;Use
; To receive serial characters:
; 1. Call Receive_Port to initialize serial_input as an input and CTS to output
; 2. Call Receive_Wait to wait for and receive one serial byte
; 3. (Optional) Check the Receive register for 00h indicating a
; serial framing error has occurred.
; To transmit serial characters:
; 1. Call Transmit_Port to initialize serial_output as an output
; 2. Move the data byte to be sent to the Transmit register
; 3. Call Transmit_Data to wait send the serial byte
;
;RS232.LIB Hardware Equates

#define Serial_Input PORTA,4 ;Serial input pin
#define Serial_Output PORTB,0 ;Serial input pin
#define CTS PORTB,2 ;Clear to send pin

;Software Equates
; DataBits and Bit_Time may be commented out to allow the calling
; program to select equates governing the number of data bits as
; well as the received baud rate. Or, change DataBits and Bit_Time
; below to your defaults.

#define DataBits 0x08 ;8 data bits

;Set Bit_Time, below, with a value from the table corresponding to your
;PIC's clock speed and the serial Baud rate required.

;Clock|1MHz |2MHz |4MHz |8MHz |10MHz |16MHz |20MHz |
;Baud--
;300 |0xCE |- |- |- |- |- |- |
;600 |0x65 |0xCE |- |- |- |- |- |
;1200 |0x31 |0x65 |0xCE |- |- |- |- |
;2400 |0x17 |0x31 |0x65 |0xCE |0xFF* |- |- |
;4800 |0x0A |0x17 |0x31 |0x65 |0x7F |0xCE |0xFF* |
;9600 |0x04* |0x0A |0x17 |0x31 |0x3E |0x65 |0x7F |
;14400 |- |0x06 |0x0F |0x20 |0x29 |0x43 |0x54 |
;19200 |- |0x04* |0x0A |0x17 |0x1E |0x31 |0x3E |
;28800 |- |- |0x06 |0x0F |0x13 |0x20 |0x29 |
;38400 |- |- |0x04* |0x0A |0x0E |0x17 |0x1E |
;57600 |- |- |- |0x06 |0x08 |0x0F |0x13 |
;---
;*Timing inaccuracies using these delay constants may cause serial errors.

#define Bit_Time 0x08 ;Serial Bit delay from table above (0x1E)
#define Half_Bit Bit_Time / 2 ;Half of the Bit delay

Receive_Port ;Sets Serial_Input to input.
BSF STATUS,RP0 ;Select memory register page 1
MOVLW B'00010000' ;Load W with bit to make RA.4 input
IORWF TRISA ;and OR with Port A tristate reg.
BCF TRISB,2 ; CTS paa port b.2 (output)
BCF STATUS,RP0 ;Return to memory register page 0
bsf CTS

73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:

RETURN

Receive_Wait ;Waits for an RS-232 start bit indicated by Serial_Input going low.
BCF CTS ; enable CTS signal

rec_wait1
BTFSC Serial_Input ;Check serial input pin

 GOTO Rec_Wait1 ;If high, wait for low

Receive_Data
;Wait for serial-input to change from high to low. When it does,
;delay for half the Bit_Time and confirm the presence of the
;start bit. Then wait for the Bit_Time and read each bit into
;Carry. Rotate Carry into the Receive byte and repeat the
;delay, Carry and rotate until number of DataBits have been
;received. The Receive register stores the received byte. If
;framing error occurs (only a simple check for a stop bit is
;done) the contents of the Receive regsiter will be 00h.

MOVLW DataBits ;Load W with number of data bits
MOVWF BitCounter ;and save in BitCounter register
MOVLW Half_Bit ;Load W with half of bit delay time
CALL BitDelay ;and wait for 1/2 bit

BTFSC Serial_Input ;Check for low start bit again
GOTO Receive_Data ;If high, error occurred-keep waiting
BSF CTS ;Disable CTS signal

NextR_bit
MOVLW Bit_Time ;Load W with bit delay time
CALL BitDelay ;and wait until middle of next bit
BTFSS Serial_Input ;Check serial input pin for 1
BCF STATUS,C ;If serial input is 0, clear Carry
BTFSC Serial_Input ;Check serial input pin for 0
BSF STATUS,C ;If serial input is 1, set Carry
RRF Receive ;Rotate Carry into received data byte
DECFSZ BitCounter ;Decrement bit counter & check for 0
GOTO NextR_bit ;If not 0, get the next bit

MOVLW Bit_Time ;Load W with bit delay time
CALL BitDelay ;and wait until middle of stop bit
BTFSS Serial_Input ;Check for high stop bit
GOTO Receive_Error ;If low, we have a framing error
RETURN ;Otherwise, return

Receive_Error ;Simply clears Receive buffer if no stop bit is found.
CLRF Receive ;If a framing error occurs, clear
RETURN ;Receive register befor returning

Transmit_Port ;Sets Serial_output to output.
BSF STATUS,RP0 ;Select memory register page 1
MOVLW B'11111110' ;Load W with bit to make Serial_output to output
ANDWF TRISB ;and OR with Port B tristate reg.
BCF STATUS,RP0 ;Return to memory register page 0
BSF Serial_Output ;Set serial line high
RETURN

Transmit_Data
;Drop PortA.4 from high to low to indicate the Start Bit and
;delay for one Bit_Time. Rotate the Transmit buffer right
;into Carry and set or clear the serial output pin based on
;Carry. Wait for another bit time and continue rotating and
;transmitting until all eight bits have been sent. Finally,
;send a stop bit.

MOVWF Transmit ;Save character in W to buffer
MOVLW DataBits ;Load W with number of data bits
MOVWF BitCounter ;and save in BitCounter regsiter
BCF Serial_Output ;Send Start bit
NOP ;and pad routine to be same length
NOP ;as :Next_Bit code so Bit_Time is
NOP ;accurate

145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:

NOP
NOP
NOP
NOP

NextT_Bit
MOVLW Bit_Time ;Load W with bit delay time
CALL BitDelay ;and wait one bit duration
RRF Transmit ;Rotate Transmit byte into C
BTFSS STATUS,C ;Check Carry for a 1
BCF Serial_Output ;If C=0, clear serial output
BTFSC STATUS,C ;Check Carry for a 0
BSF Serial_Output ;If C=1, set serial output
DECFSZ BitCounter ;Decrement bit counter & check for 0
GOTO NextT_Bit ;If not 0, get the next bit
MOVLW Bit_Time ;Load W with bit delay time
CALL BitDelay ;and wait until end of last bit
BSF Serial_Output ;Set serial line high for Stop bit
MOVLW Bit_Time ;Load W with bit delay time
CALL BitDelay ;and wait a bit
RETURN

BitDelay ;RS-232 Bit time period delay
MOVWF Counter ;Move delay time in W to Counter

Loop NOP ;Pad loop to 4 cycles
DECFSZ Counter,1 ;Decrement bit counter
GOTO Loop ;and do it until zero
RETURN

